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The method of integral relations is applied to an approximate solution
of dynamic and thermal problems in the propagation of laminar gas
jets of small radial extent along a plane wall. In distinction from the
work of Riley [1}, all the basic characteristics of the flow and of heat
transfer are presented in a form convenient for practical application
over a rather wide range of variation of Prandtl number.

We shall suppose that an axisymmetric jet issues
from a circular slit and propagates along a plane wall
which coincides with the plane z = 0 (r is reckoned
from the axis of symmetry of the jet). We shall rep-
resent the jet source as a slit between the plane z = 0
and a disk parallel to it.

The system of differential equations defining the
above problem regarding propagation of a gas jet along
a wall, has the form, in dimensionless coordinates,
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The boundary conditions may be written as

V,=0, V,=0, i=i, at z=0,
V,=0at z=3,
i=0 at z=4§ (2)
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where 6 is the thickness of the wall layer of the jet
and O is the thickness of the thermal layer.

The condition that there be a non-trivial solution to
the hydrodynamic problem, as is known [2], has the
form
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It is clear that for pu = const the second term on
the left of this relation goes to zero. In fact, since
ip = 1, the product p,u,u(l_n) /n will be constant. But,
if we take into account that 0.74 <n =< 1, then, over
the whole range of change, we may replace the quan-

tity ;,(t-n) A by the mean value
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The mean deviation from the condition pu = const will
then not exceed 10%.

In view of this, the condition for a non-trivial so-
lution of the hydrodynamic problem for a radial jet
of variable density p may be assigned in the form
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We shall write the first and third equations of sys-
tem (1), with the aid of the continuity equation, in
the form
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Carrying out integration of these equations with
respect to z, we arrive at the integral relations for
a radial gas jet in the form
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The velocity profile and the change in enthalpy in
the sections of the jet will be given by the polynomials
V, = VaaxF (1),

[ =1lyf (1), (8)

where 1 = z/8, np = z/57.
The choice of the polynomial coefficients F{n) and
f(n) will satisfy the boundary conditions

F=0 at n=0andat n=1,
on 2
of o
=0, =0, =0 at 5 =1,
J 01, In: "
f=1 at m,=0. (10)

Then the maximum velocity in terms of the mass
flow rate of fluid will be determined by the formula

Vmax = G/2n fopﬁ, (11)
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where
1
A1=§F(n)dn- (12)
0
But if we take into account that

p = Uif () = 0./ (n,), (13)
we obtain 7
Vinax = Gf ()25 r4; p,,8. (14)

Then the desired velocity profile will take the form

Vi= GF () f (n:)/2n rA; p 8. (15)
Taking into consideration that
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we shall give the momentum equation the form
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If we use condition (5), we find that
rd = GE/(2rn A,))%p, E, (21)
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Then the differential equation to determine the flow
rate of fluid takes the form
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Carrying out integration of this equation, with the
condition that the enthalpy iw does not depend on r, we
obtain

G =2 A AY Tppy AEPBEAH, (A) . (24)

This allows us to find the values of all the basic flow
parameters. Making the calculation, we obtain
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It is evident that for practical use of formulas (24)~
(30) it is necessary in addition to the flow constants,
to give the Prandtl number values.

If the jet source is a slit of height §, between the
planes z = 0 and a disk of radius r =a parallel to
it, then, assuming that the stream through the slit is
uniform with velocity V, and enthalpy i,, we obtain

1 Visia
E= 5 . (31)
We shall now turn to determination of the thickness
of the thermal layer. To do this we use the heat bal-
ance equation, which, following substitution of the
profiles of velocity and enthalpy, takes the form of the

Bernoulli differential equation
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If we make the substitution
u(r) =iy, (38)
we obtain the equation
du - nMu+ nN —0. (39)
dr r r¢
which has the general solution
U= r—"M(C — nNriM-3n M — 3). (40)
Therefore,
iy = MY C—nNr¥"=3 [n M —3) . (41)

K we assume that nM # 3 and iy =i}, at r=a =1,
we find

C =il +nN/nM —3). (42)

Then, to determine GT, we obtain the equation
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where pyw' is the value of the viscosity at the wall, at
r=q=1.
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Basic Flow and Heat Transfer Parameters
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If there is no energy dissipation, then putting N =
=0 in (43), we obtain

iy = ipr ™, 45)

i. e., the equation for determining & takes the form
AS H (AYHy (A) = Blnr/o\nlry G/iF ). (46)

In the case when the wall temperature is constant,
i.e., iy = i{,v = const, we obtain in place of the dif-
ferential equation (32), an equation to determine & in
the form
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Hence, we see that allowance for energy dissipation
is of appreciable importance only in the neighborhood
of the point of efflux of the jet along the wall. At suf-
ficiently large values of r >R, as determined exper-
imentally, the second term on the right side of (48)
drops out, and we obtain

AS H (AVH, (A) = B/o. (49)

This equation allows us to find 67 for the problem
of flow over a wall of a compressible fluid with con-
stant wall temperature and in the absence of energy
dissipation.

Knowing A, let us determine the heat transfer
coefficient, and the Nusselt thermal similarity param-
eter, referred to the distance r from the source,
from the formulas

oy = g— £ (0), (50)
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We note that in flow along a wall of a jet of com-
pressible fluid, the relation
Cf Nu"w [ M = const (52)

24%A
will hold.

If the velocity field is approximated by a second
degree polynomial,

Fn)=4{1—m), (53)
and the temperature field by a third degree polynomial,
f ) = (1 —mn.)? (54)

then the basic characteristics of the flow and of heat
transfer, for Prandtl number values ¢ = 0.536, 0.72,
and 1, in the case of constant wall temperature, and

in the absence of energy dissipation, will be determined
by the formulas given in the table.

We see from the table that variation of Prandtl
number in the range 0.536 to 1 has practically no ef-
fect on Cr, and even less effect on the Nusselt number.
Therefore, if the effect of Prandtl number is neglected,
the calculations are simplified even more.
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